

(Government Aided Autonomous institute) Munshi Nagar, Andheri (W) Mumbai - 4

END SEMESTER EXAMINATION JULY 2023

Program: B. Tech Second Year Mechanical Semily

Duration: 03 Hrs

Course Code: PC-BTM406

Maximum Points: 100

Course Name: Material Science

Semester: IV

Notes:

1. Question no 1 is compulsory

2. Attempt any four questions from the remaining six questions.

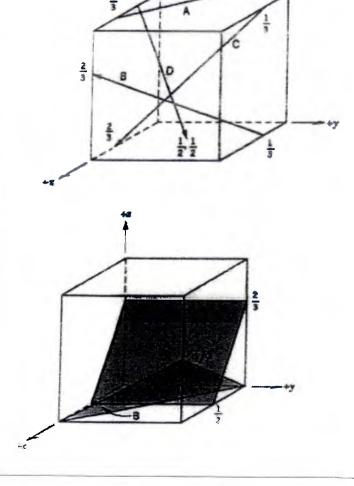
3. If necessary assume suitable data with justification

4. Draw neatly labeled sketches wherever required.

Q. No.	Questions	Points	CO	BL	PI
1A	Draw Fe-C equilibrium diagram and label the temperature, composition, and phases. Write properties of austenite region and pearlite region. Explain binary eutectic system in it. Also, find the exact amount of components present in the eutectic transformation.	10	a real variation	5	3.2.3
1B	How do growth rate, nucleation rate, and overall transformation rate contribute to the formation of a Time-Temperature-Transformation (TTT) diagram? Explain the TTT diagram, and illustrate your explanation using the following key points and a schematic diagram. a. At melting temperature(M.T) b. At higher temperature few temperature below M.T. c. At lower temperature.	10	3	2	2.3.1
2A	Illustrate the complete material life cycle through a schematic diagram and elaborate on the ways in which the conservation of natural resources can be achieved within this context, emphasizing the relationship between materials and the environment.	06		6	3.2.1
2B	When three thin disk specimens of aluminum oxide are placed over a printed page, they exhibit varying light-transmittance characteristics: the first disk is transparent, the second is translucent, and the third disk is opaque. Despite being made of the same material, explain factors contribute to the different observed properties among these three specimens.		1,2	6	4.2.1
2C	From the data given below for the Cu-Ni system, plot the equilibrium diagram to scale and label the diagram. The melting point of Cu: 1,085 °C. the melting point of Ni:1,455 °C Answer the following for 65%Ni alloy composition:	08	3	4	3.8.1

(Government Aided Autonomous Institute) Muachi Nagar, Andhori (W) Mumbai 4

END SEMESTER EXAMINATION JULY 2023


from liquid?

- B. What is the composition of the last solid formed at the end of the solidification process?
- C. What is the amount of solid and liquid at 1340 °C?

Weight % Ni	20	40	60	80
Liquidus temp. °C	1200	1275	1345	1440
Solidus Temp	1165	1235	1310	1380

Determine the Miller indices for the directions and the planes shown in the following unit cell:[Note: provide the stepwise calculations for the given problem]

10(6 3 5 3.1.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

END SEMESTER EXAMINATION JULY 2023

3B	What is a rheological material, and what are the different types of rheological materials? Provide an explanation of one specific type of rheological material and illustrate its application in a	05	1	2	1.3.1
3C	suitable real-world scenario. Explain the purpose and benefits of tempering process in enhancing the mechanical properties of materials.	05	4,3	5	3.1.1
4A	Discuss each case of the heat treatment process of Fe-0.65% C eutectoid steel rapidly cooled from a preheated temperature of 860°C (>727°C) as follows [NOTE: explain, write properties of the final product] 1. Rapidly cool to 640°C, hold for 10 s, rapidly cool to 590°C hold for 10³ s and quench to room temperature 2. Rapidly cool to 300°C, hold for 70 s and quench to room temperature; 3. Rapidly cool to 630 °C, hold for 15 s, rapidly cool to 400 °C, hold for 10⁴ s and quench to room temperature; 800 800 800 800 800 800 800 8	10	4	6	2.4.1
4B	Classify plain carbon steel and provide a detailed explanation of each type of plain carbon steel, highlighting their respective application(s).	05	4	2	3.2.
4C	Explain the reason behind the existence of only 14 types of Bravais lattices, emphasizing the role of crystal systems.	05	2	3	2.3

O Parties of the Control of the Cont

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

END SEMESTER EXAMINATION JULY 2023

5A	 Nickel Molybdenum Vanadium Cobalt 	06	4		2.2.
5B	5. lead Define nanomaterials and elaborate on the top-down and bottom-up approaches used in their synthesis.	06	4	4	4.2.2
5C	Explain the concepts of quenching and martensite in the context of materials science, and how the Time-Temperature-Transformation (TTT) diagram is utilized to understand these processes. Furthermore, elucidate the mechanism by which heat is extracted from a component when liquid quenching media are employed.	08	4	2,6	2.2.2
6A	Classify composites based on the form of reinforcement and provide a detailed explanation of fibrous composite materials. Additionally, discuss why mechanical properties are significantly improved at the micro scale compared to the macro scale.	08	4	4	4.2.2
6B	Write a composition of the following materials and their application. 1. yellow metal 2. Nickel gun-metal 3. Dow metal	06	3,4	3	3.2.1
6C	Discuss the reasons for the increasing demand of ceramic materials in engineering applications. Classify ceramic materials and list their properties.	06	4	3	3.2.3
7A	Determine the tensile stress that is applied along the $[1\overline{1}0]$ axis of a silver crystal to cause slip on the $(1\overline{1}\overline{1})[0\overline{1}1]$ system. The critical resolved shear stress is 6MPa. Also draw cubic crystals showing, slip plane and slip direction.	08	2,3	4	3.8.1
7B	Discuss the recycling issue in the materials. Discuss how materials engineering can play a role in "green design."	07	1,4	6	3.4.2
7C	Explain why diamond remains stable at room temperature and does not undergo a transformation to graphite, despite graphite being an unstable phase of carbon at room temperature. Support your explanation with a suitable diagram.	05	2	5	3.2.1

DEPARTMENT OF MECHANICAL ENGINEERING

END SEMESTER EXAMINATION, JULY 2023

1977

PROGRAM: SY B.Tech. (Mechanical), Semester-IV PE-BTM403 - Fluid Mechanics

> Total points: 100 **Duration: 3 HOURS**

Note:

- Answer any 5 questions. Each question carries 20 points
- Answer should be question specific and to the point.
- All component of a question must be answered togather.
- Data in the last column represents course outcome and Blooms Taxonomy of respective question

CO/BI 5/2,3

2/3

1/24

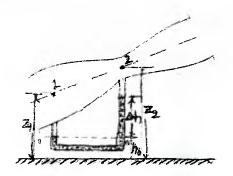
- Q1. What is boundary layer? Explain the concept with the help of flow over a flat plate. How
- (A) does it effect the motion of a moving of an object in a fluid medium? Is it possible to measure the thick... ess of a boundary layer? Illustrate your answer with sufficient examples.
- A vessel of the shape shown in ... (B) he following figure is filled with liquid of specific g. ~avity 0.92. The pressure gauge at A reads 400 kN/m2. Determine a) the pressure read by gauge located at B. b) the magnitude and location of the force
- acting on the left wall of the vessel for per unit of its depth. 1.5 m Q2. What is Newton's Law of Viscosity? Differentiate between the Newtonian and Non-(A) Newtonian Fluids? Classify and characterise the Non-Newtonian Fluids with at least
- A test tube is spun in a centrifuge. The tube support is mounted on a pivot so that the tube swings outward as rotation speed increases. At high speeds, the tube is nearly horizontal. Find 2/3 10
 - (a) an expression for the radial component of acceleration of a liquid element located (b) the radial pressure gradient dp/dr, and

 - (c) the required angular velocity to generate a pressure of 250 MPa in the bottom of a (The free surface and bottom radii are 50 and 130 mm, respectively.)

- Derive differential form of a general Continuity Equation. Simplify it to obtain a Q3, continuity equation for steady state incompressible flow.
- The velocity profile of a developed laminar flow in circular cross-section pipe of radius (B) 10 4/6

$$u = -\frac{1}{4\mu} \frac{dp}{dx} \left(1 - \frac{r^2}{R^2} \right)$$

Plot this profile graphically at a pipe cross-section. Using above profile derive expression for the following quantities.


- Wall shear stress

Q4. Consider a Venturimeter with inlet and throat (A) diameter A₂ and A₂ as shown.

Drive the following expression to evaluate the flow rate.

$$Q = \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2g(\rho_m/\rho - 1)\Delta h}$$

Where, ρ is the density of the flowing fluid, and ρ_m is the density of the manometric fluid.

10 4/5

(B) A 45 degree reducing pipe bend in a horizontal plane, tapers from 600mm diameter to at the inlet to 300mm at the outlet. The pressure at the inlet is 140kPa gauge and the rate of flow of water through the bend is 0.425 m³/s. Neglecting friction, calculate the net resultant horizontal force exerted by the water on the bend. Assume uniform conditions with straight and parallel streamlines at inlet and outlet and the fluid to be frictionless.

Consider a little different situation where pipe bend is on a plane normal to the ground. Will the resultant force acting on bend be same? Recommend a cost effective bend arrangement with justification.

- Q5. Explain your understanding about following points.
 - a) Characteristics of a turbulent flow
 - b) Developed and developing flow
 - c) Significant of speed of sound in the study of compressible flow

10 5/3.5

6/2,1

6/4

10

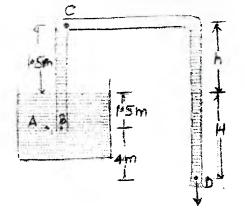
10

(B) Using the integral momentum equation determine the expression for the following

$$\frac{u}{U} = 2\frac{y}{\delta} - \left(\frac{y}{\delta}\right)^2$$
 where U is free stream velocity and momentum thicknesses, and interpret

- a) the displacement and momentum thicknesses, and interpret the result
- b) the boundary layer skin friction coefficient.

Q6 What is Couette flow? Mention all assumptions and derive an expression for developed 10 3/2


(A) laminar velocity profile for the flow.

(A)

(B) A tube is used as a siphon to discharge an oil of specific gravity 0.8 from a large open vessel into a drain at atmospheric pressure as shown in the figure. Analyse and calculate,

- a) The velocity of oil through the siphon,
- b) The pressure at point A and B,
 - c) The pressure at the highest point C
- d) The maximum height of the C that can be accommodated above the level in the vessel
- e) The maximum vertical depth of the right limb of the siphon

(Take the vapour pressure of the liquid at the working temperature to be 29.5kPa and P_{atm} =101kPa

LO 3/2

Q7. Differentiate between

- (A) a) Streamline and Streakline
 - b) Lagrangian and Eulerian approach
 - c) Reynold number and Mach Number
 - d) Integral and Differential approach of flow analysis

(智) List down file characteristic features of a compress ble flore compared to an incompress ne flore what is the significance of spee tot bound in compressible fluid 10

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END-SEMESTER EXAMINATION - JULY 2023

Program: B. Tech. in Mechanical Engineering Lui V

Duration: 3 Hours

Engineering 1200

Max. Points: 100

Course Name: Solid Mechanics

Course Code: PC-BTM415

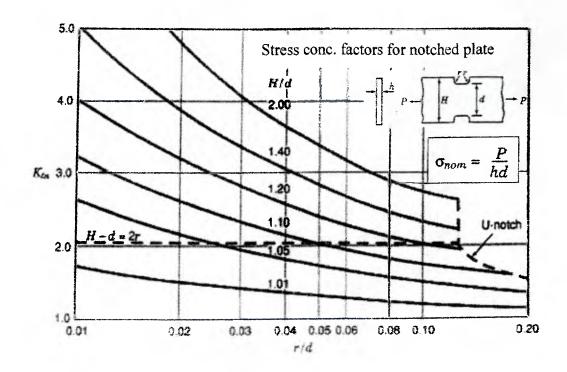
Semester: IV

Notes:

1. Question no. 1 is compulsory, solve any 4 of the remaining 6 questions.

2. 'a' is the single last digit (0 to 9) of the student's registration number in questions marked with *.

3. Refer Annexure I for additional information. Assume suitable data if necessary.


Q. No.	Questions	Points	со	BL	Mod.
ORY 18	A.) * Given the stress matrix τ_{ij} , determine the magnitude of the normal stress on a plane which is equally inclined to all three axes.	(5)	1	3	7
COMPULSORY	B) * The displacement field for a body is given by: $\overline{u} = \left[(x^2 y^2 z^2 + (a+5)xy^2)\overline{\iota} + \left(\frac{xz}{y}\right)\overline{\jmath} + (7y^2 z)\overline{k} \right] 10^{-4}$	(5)	2	3	2
	What are the strain components at $(1, 1, 1)$? C) * A notched flat plate as shown in the figure is made of material with ultimate tensile strength of 600 MPa. Consider $H = (1061+a)$ mm, $d = 100$	(5)	3	3	ā
	mm, $r = 3$ mm, $h = 3$ mm. Calculate the safe load it can carry with factor of safety as 3.0. D) * A bar of steel 1 meters long, is $(30+a)$ mm in diameter for 500 mm of its length and $(15+a)$ mm in diameter for the remaining 500 mm. The bar is held fixed at one end, and it is axially hit at the free end by a mass of 10 kg moving at 5 m/s. Taking E = 200 GPa, find the stress induced in the smaller section of the bar due to the impact.	(5)	4	3	6
Q2	A) * The rectangular components of stress at a point are given by the matrix shown. Determine the principal stresses and the $ [\tau_{ij}] = \begin{bmatrix} 7 & 10 & 5 \\ 10 & 8 + \alpha & -10 \\ 5 & -10 & 9 \end{bmatrix} $	(10)	2	3	1
and the same of th	direction of the maximum principal stress. B) Discuss the advantage of performing the plane stress and plane strain approximations with suitable example of each case. Compare the features of both approximations.	(5)	2	2	3
	C) * A 32 mm long steel rod of (28+a) mm diameter is pressed on to a copper plate with a force of (12+a) N.	(5)	2	3	5

	Consider $E_{steel} = 200 GPa$, $v_{steel} = 0.3$, $E_{Cu} = 115 GPa$, $v_{Cu} = 0.33$. Determine the following: (i) the width of the contact area, (ii) the max. contact pressure, (iii) the principal stresses at the contact.	7.	,		
Q3	A) * An object M of 20 kg mass is released from rest in the position shown in the figure and it is stopped by a cover plate attached at end A of the vertical rod ABC which is fixed at end C. Section AB is of (5+a) mm diameter and section BC is of (10+a) mm diameter. E = 200 GPa. Determine the instantaneous	(10)	4	3	6
	stresses in the rod. B) * A thick-walled steel tube has an internal radius of (100+a) mm and tube wall thickness is (10+a) mm. It is subjected to internal pressure of 25 MPa and external pressure of 3 MPa. Consider the tensile strength of steel as 400 MPa.	(10)	3	3	4
Q4	 Determine the factor of safety as per Maximum Principal stress theory of failure. If E = 200 GPa and v = 0.3, determine the changes in the internal radius of the tube due to the pressure loading. A) Figure shows an infinitesimally small element around plane n'. The plane has its normal vector as n and the traction vector on the plane is Tn. The stress state at the 	(5)	1	4	1
Additionables and the second of the second o	location is represented by the stress matrix $[\tau_{ij}]$. The body force on the element per unit volume is γ_x . Derive the Cauchy's equation for the traction component T_x^n . B) (i) Discuss three modes of fracture. (ii) Figure shows a metal plate of thickness $B=20$ mm which is used for clamping purpose (all dimensions in mm). Find safe load P in the presence of a crack in the frame at location shown. Material data: $K_{lc}=67$ MPa \sqrt{m} .	(10)	2	3	7
many property program and man, adoption of January	C) Discuss the principle of 300 h=50 superimposition. Prove the uniqueness theorem for elastic bodies using the principle of superimposition.	(5)	3	4	3

Page 2 of 4

OF	A) Davive the fellowing differential equations of equilibrium	(5)	3	4	2
Q5	A) Derive the following differential equations of equilibrium. $\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + \gamma_z = 0$	(5)	3	4	2
		(E)	3	2	2
	B) Explain the following topics in solid mechanics: (i) measurement of	(5)	3	2	2
	strain using strain gauges, (ii) physical interpretation of the				
	compatibility equations.				
	C) * A steel disk of (730+a) mm diameter is shrink fitted on a steel shaft	(10)	2	3	4
	of (90+a) mm diameter. If the shaft is rotating at 5200 rpm, find the	(10)	_		7
	minimum required interference between shaft and disk such that disk				
	will not separate from the shaft. Also calculate the maximum				
	tangential stress in the disk at above speed.				
Q6	Consider E = 200 GPa, $v = 0.3$ and density = 7850 kg/m ³ .	(5)	3	2	2
Qu	A) Briefly discuss following terms: (i) Cauchy's strain-displacement	(5)	3	2	2
	equations, (ii) principal strain planes, (iii) strain invariants. B) Discuss the significance of generalized Hooke's law in solid	(5)	2	2	3
	mechanics. Describe its form for isotropic and orthotropic materials.	(3)	2	2	3
	C) * A thin-walled rectangular box section has the mean width (32+a)	(5)	2	3	5
	mm and height (16+a) mm. The wall thickness is 2 mm along width	(3)		3	,
	and 1 mm along height. It is subjected to torque of 35 Nm. Calculate				
	the shear stress in the wall and the angle of twist. $G = 80$ GPa.				
	D) Discuss the applications of metal plasticity in engineering. Describe	(5)	3	2	7
	the Bauschinger effect with the help of load-displacement diagram.				·
Q7	A) Explain the following: (i) True stress and strain versus Engineering	(5)	1	2	1
	stress and strain, (ii) concept of the stress as a tensor quantity.	(-)		and the second s	
	B) (i) Give a few examples from real life about axisymmetric bodies	(5)	3	3	4
	subjected to axisymmetric and non-axisymmetric loading.	•			
	(ii) Derive an expression for circumferential strain ϵ_{θ} in				
	axisymmetric bodies subjected to axisymmetric loading.			a visit	
	C) Give a few examples of thermoelastic problems. Explain how	(5)	2	3	5
	temperature loading is accounted for in the stress-strain relationship	1			
	in thermoelastic problems. Obtain the stresses for a case wherein a	Ball 1			
	fully constrained solid is uniformly heated.	and the			
	D) Briefly discuss the following topics: (i) resilience, (ii) proof	(5)	4	2	6
1	resilience, (iii) strain energy, (iv) strain energy density, (v) difference	to the entire conflict.			
- 1	between the stresses induced due to static and impact loading.	de compa			

ANNEXURE I: USEFUL FORMULAE

Stresses in thick pressurized cylinders

$$\sigma_r = \frac{p_a a^2 - p_b b^2}{b^2 - a^2} - \frac{a^2 b^2}{r^2} \times \frac{p_a - p_b}{b^2 - a^2}$$

$$\sigma_{\theta} = \frac{p_a a^2 - p_b b^2}{h^2 - a^2} + \frac{a^2 b^2}{r^2} \times \frac{p_a - p_b}{h^2 - a^2}$$

 $\sigma_z = 0$ with both ends open

$$\sigma_z = v(\sigma_r + \sigma_\theta)$$
 with both ends closed

Stresses in rotating solid disks

$$\sigma_r = \frac{3+\nu}{8}\rho\omega^2(b^2-r^2)$$

$$\sigma_{\theta} = \frac{3+\nu}{8}\rho\omega^2b^2 - \frac{1+3\nu}{8}\rho\omega^2r^2$$

Stresses in rotating disks with central hole

$$\sigma_r = \frac{3+\nu}{8} \rho \omega^2 \left(b^2 + a^2 - \frac{a^2 b^2}{r^2} - r^2 \right)$$

$$\sigma_{\theta} = \frac{_{3+\nu}}{8} \rho \omega^2 \left(b^2 + a^2 + \frac{a^2 b^2}{r^2} - \frac{_{1+3\nu}}{_{3+\nu}} r^2 \right)$$

Stresses for two cylinders in contact with each other

$$b = \sqrt{\frac{2F}{\pi l} \left[\frac{(1 - \nu_1^2) + (1 - \nu_2^2)}{\frac{1}{Z_1} + \frac{1}{Z_2}} \right]}$$

$$p_{max} = \frac{2}{\pi} \frac{F}{bl}$$

$$\sigma_{x} = -2vp_{max} \left[\sqrt{\left(1 + \frac{z^{2}}{b^{2}}\right)} - \frac{z}{b} \right]$$

$$\sigma_y = -p_{max} \left[\left(2 - \frac{1}{1 + z^2/b^2} \right) \sqrt{1 + z^2/b^2} - 2 \frac{z}{b} \right]$$

$$\sigma_z = -p_{max} \left[\frac{1}{\sqrt{1+z^2/b^2}} \right]$$

SIF for edge cracked plate subjected to axial load P / bending moment M

$$(K_I)_P = \frac{P}{Bh} \sqrt{\pi a} Y_P \; ; (K_I)_M = \frac{6M}{Bh^2} \sqrt{\pi a} Y_M$$

$$Y_p = 1.12 - 0.23\alpha + 10.55\alpha^2 - 21.72\alpha^3 + 30.39\alpha^4$$

 $Y_M = 1.122 - 1.4\alpha + 7.33\alpha^2 - 13.08\alpha^3 + 14\alpha^4$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester - July 2023 Examinations

Program: S.Y.B. Tech. (Mechanical Engineering)

Duration: 03 Hrs

Course Code: PC-BTM404

Maximum Points: 100

Course Name: Mechanical Engineering Measurement

Semester: IV

Notes:

1. Question number 1 and 2 are compulsory

2. Solve any 3 questions from question number 3 to 7

2. If necessary assume suitable data with justification

3. Draw neat labeled sketches wherever required.

24/7/23

Q.	Questions			Points	СО	BL	M.N
	Following table list the measuring instrument table) for measuring mechanical properties (table) of the system. Students shall match the corresponding mechanical property.	right hand side column of	the				
	Measuring Instruments	Measurand		05			
	Radiation pyrometer	Temperature	- 1			-	
1	Pirani gauge	Liquid Level			1,2,3	4	2 to 7
	Rotameter	Pressure					2 107
	Float Gauges	Flow rate					
	Thermistor	Acceleration					
	Further student shall explain only the measurement instrument listed on left hand s neat sketch. (Note: Credits will be given only	ide column of the table w	the vith	15			
2 (A)	water that flows through during a time interval head h. The formula is $C_d = \frac{W}{t\rho A\sqrt{2}}$	be found by collecting the when it is under a constant	nt	10	3,4	4	6
	Find C _d and its possible error if: W=390±0.2 mm, ρ =1050±0.1% kg/m ³ ; A= π d ² /4, h=3.6±0	$.03 \text{ m. g} = 9.81 \pm 0.1\% \text{ m/s}^2$					
2 (B)	The speed of a shaft rotating at 2880 rpm is a The stroboscope dial is slowly turned within f second. Indicate the flash rate setting which images.	lashing rates of 96 to 24 t	per	0	1,3	4	3,4
3 (A)	It is proposed to develop measurement and conflow rate and pressure of water in reaction operating to its best efficiency point. Propose	type hydraulic turbine f	for	10	3,4	5	4,5,6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar Andheri (W) Mumbai – 400058

End Semester - July 2023 Examinations

	data from system and controlled it remotely using internet network system.	10.1	1		
	Students are instructed to present architecture of such network integrated	rp -			
	measurement and control system (explain with neat schematic diagram).				
	A system is given by differential equation				
3 (B)	$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 8x$ where y=output and x=Input. Determine all time domain specifications for unit step input.	10	1	4	2
4(A)	A single strain gauge having resistance of 130 Ω is mounted on a steel cantilever beam at a distance 0.12 m from the free end. The beam dimensions are 25 cm (length) x 2.0 cm (width) x 0.3 cm (depth). An unknown force F applied at the free end produces a deflection of 11.8 mm of the free end. If the changes in gauge resistance is found to be 0.145 Ω , calculate the gauge factor. Deflection of the free end δ = FL ³ /3EI, where F= Force, L=Length, E= Youngs modulus, I=Moment of Inertia, Take Young's modulus for steel as 200×10^9 N/m ²	10	3,4	4	
4 (B)	Explain working principle of Mcleod gauge with neat diagram. A Mcleod gauge has volume of bulb and measuring capillary equal to 110x10 ⁻⁶ m ³ and measuring capillary diameter of 1.1 mm. (i) Calculate the pressure indicated when the reading of measuring capillary is 28 mm in case approximate formula is used. What is the error if the exact formula is used for pressure measurement?	10	2,3	3	4,5
5 (A)	A bubbler or purge method is used to measure the water level. Air compressor having pressure range of 0-5 bar is used for the measurement of the water level. Air tube with opening at the bottom of the tank is used to purge the air in the water tank. Operator initially purge the 3 bar pressure in the air tube and no air bubbles are observed. The pressure is varied to maximum rating of 5 bar although no air bubble is observed. In fact at the setting of 5 bar pressure the water rises into the air tube up to 5 meters measured from bottom of the tank. Estimate the water level in the tank from the different observations provided.	10	1,2,3	3	
5 (B)	Following are the different applications/systems/processes wherein the temperature measurement is essential; (i) Microwave oven (ii) Temperature of human beings entering institute campus under COVID-19 pandemic situation. Students shall select the appropriate temperature measuring system for the above applications with justification and also explain their working principle with neat labelled sketches. (Note: Points will be assigned to explanation only if selection of system is appropriate).	10	4	6	6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester - July 2023 Examinations

	q0=30 after ca	alibration.	pept. (ii) qi if the instrument reads				
	of input of a	he equation for the best-lin	near fit. (ii) The standard deviation			1	
	50	49	49				
	40	39	41				
(10)	30	26	34				
7(B)	20	17	23				
	10	8	12				
	0	2	2				
	q _i (Mpa)	q _o (increasing) (Mpa)	q _o (decreasing) (Mpa)		,,		1,4
)	Following is	the calibration data of a pre	essure transducer:	10	3,4	3	1,2
7 (A)	differential coefficient density of w	pressure of 220 mm merci of discharge is 0.98, spe rater 1000kg/m ³	on inlet and throat of venturi shows a cury. Calculate the water flow rate if scific gravity of mercury 13.6 and				error of the contract of the c
	horizontal v	enturimeter with 200 mm	ifacturing process is measured by a inlet and 100 mm throat. The U-tube	10	3,4	3	5,6
6 (B)	water at t transfer is sequence a In air, prob In water, τ In air, prob For $t < 0$, $T=25$ $0 < t < 7$, $T=25$ $0 < t < 7$, $T=25$ $0 < t < 15$, $T=25$	"instantaneous". The effere as follows: we dry, τ = 35 s; =2 s; we wet, τ = 15 s; C (initial temperature) =35°C (dry probe in air) Γ=70°C (probe in water), T=35°C (wet probe in air). In indicated temperature a rough appropriate indicated and t=30 s).	ated temperature (time relationship		2,3		3
-	A tempera	ture probe is transferred fr	om air at 25°C to air at 35°C, then to) 10	2,3	5	5
6 (A) thickness.	Also calculate the nature modulus=200 GN/m ² , P	e maximum deflection is 0.333 or ral frequency of diaphragm. Given oisson's ratio-0.28 and density of		2,3	4	5,6
	differentia	of 7 MN/m ² . The diameter	nstructed of spring steel to measurer of diaphragm is 12.5 mm. Calculat	e			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM EXAMINATIONS (Even SEM) July 2023

Program:

BTech Mechanical engg fem W

Duration: 3.00 hr

Course Code: PC-BTM412

Maximum Points: 100

Course Name: Kinematics of Machinery

Semester: IV

Notes:

1. Question number ONE is compulsory solve any four out of remaining six

2. Question nos. one, two and three should be solved on drawing sheet.

3. Answers to each sub-questions are grouped together

4. Use of scientific calculator is allowed

5. Begin answer to each question on new page.

6. Candidates should write the answer legibly

Q.No.	Questions	Pts	Cos	BL	PI
1	a) A crank-rocker linkage has a 100 mm frame, a 25 mm crank, a 75 mm coupler and a 90 mm rocker. For the given mechanism find the angular velocity and angular acceleration of coupler and follower, for the configuration of minimum and maximum transmission angle. (Use IC method for velocity analysis and relative method for acceleration analysis.) Take uniform angular velocity of crank as $\omega = 10$ rad/sec (ccw).	20	1,3	3,4	2.3.
Z.	 a) A crank-rocker linkage has a 100 mm frame, a 25 mm crank, a 90 mm coupler and a 75 mm rocker. For the given mechanism find the minimum and maximum transmission angle. Sketch both the toggle position and find corresponding crank angles and transmission angles. (Solve graphically). b) Crank 2 of the system shown in fig. has speed of 60 rev/min ccw. derive the expression and calculate the angular velocity and angular acceleration of link 4. 	10	1,3	3,4	2.3.
	(Use analytical complex algebra method). $O_2O_4 = 300$ mm, $AO_2 = 175$ mm, $BO_4 = 700$ mm.				

3	A course radely a military				
	A cam, with a minimum radius of 50 mm, rotating clockwise at a uniform speed, is required to give a knife edge follower the motion as described below:	20	3,1	3	2.3
	a) To move outwards through 50 mm during 120° rotation of the cam			1	
	0) To dwell for next 60° c) To return to its starting position during payt				
	90 d) To dwell for the rest period of a revolution i.e. 90° Draw the				
	prome of the cam, when the line of stroke of the follower passes through				
	the center of the cam shaft, the displacement of the follower is to take				
	place with <i>UARM</i> during outward movement and <i>SHM</i> during inward	1			
	movement Determine the maximum velocity and acceleration of the				1
	follower when the cam shaft rotates at 900 r.p.m. Also draw the	-			
	displacement, velocity and acceleration diagrams for one complete				
4	revolution of the cam.				
4	a) Define the following terms, illustrating with sketches where possible,	4x5		2,3	2.4.
	element or link, lower pair, higher pair, kinematic chain.		1		1
	b) Describe with neat sketch a quick return motion mechanism (slotted		2		
	lever-crank) suitable for shaping machine. Show how the ratio of time		3		
	taken for the two strokes is determined?		4		
	c) Sketch the Davis steering gear mechanism and show that it satisfies the				
	required condition for correct steering.			1	
	d) Explain the meaning of the following terms: circular pitch, diametral				
5	pitch, module, pressure angle. Illustrate with sketches where possible. a) Deduce the expression for minimum number of teeth on gear wheel.	10	1	12	0.2
J		10	4	3	2.3.
	b) A 6 mm/tooth module, 24-tooth pinion is to drive a 36-tooth gear. The	10			1
	gears are cut on the 20° full-depth involute system. Find and tabulate	10			
	the addendum, dedendum, circular pitch, base pitch, base circle radii,				
	length of path of approach and recess, and contact ratio. Also angle of				
	action for pinion and wheel.				
6	a) A spur gears with 9 and 36 teeth are to be cut with 20° full-depth cutter	10	4	4	2.2.
	with module of 8 mm.				3
	i. Determine the amount that the addendum of the gear must be				
	decreased in order to avoid the interference.	7 71			
	ii. If the addendum of the pinion is increased by the same amount, determine the contact ratio.				
	T	5			
	b) What is interference in gear? How it is avoided? c) State the advantages of gear drive over the belt drive.	5			
	c) State the advantages of gear drive over the best drive.				
7	a) State the conditions for straight line generating mechanism. Sketch the	10	2,3	3	2.3.
	Peaucellier mechanism and prove that the tracing point 'P' describes				1
	the straight line.				
	b) A driving shaft of a Hooke's joint rotates at a uniform speed of 400	10			- 67
	rpm. If the maximum variation in the driven shaft is $\pm 5\%$ of the mean	10			
	speed, determine the greatest permissible angle between the axes of the				
	shafts. What are the maximum and minimum speeds of the driven				
	shaft?				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION - JULY 2023

Program: S.Y.B.Tech (Mechanical) Seus 1

Duration: 3 Hours

Course Code: BS-BTM401

Maximum Points: 100

Course Name: Statistics Probability Hypothesis Testing & Vector Calculus

Semester: IV

Note:

1. Attempt Any Five Questions.

2. Answers to the sub questions should be grouped together.

1	_	Questions		Points	3 (CO E	BL	
1	a	The probability of a man hitting the target at a shooting range $\frac{1}{4}$. If he shoots 10 times, what is the probability that he hits th target exactly three times? What is the probability that he hits the target at least once?	_	6	C	001 B	L.5	2
	b	and $4x-5y+33=0$ Find $x=0$	1	6	co	I BL	5	1
		Verify Green's Theorem in the plan for $\oint_C (xy+y^2)dx + x^2dy$, where C is the closed curve of the region bounded by the curves $y=x^2$ and $x=y^2$	8	3	CO	2 BL3		6
b	v o c	A manufacturer of electric bulbs, according to certain process, finds the S.D. of the life of lamps to be 100 hours. He wants to change the process, if the new process results in a smaller ariation in the life of lamps. In adopting a new process, a sample of 150 bulbs gave S.D of 95 hours. Is the manufacturer justified in the hanging the process? Valuate $\iint_{S} (\nabla \times \overline{F}) \cdot nds$, where	6		COI	BLS	5	
		$i = 2y(1-x)\hat{i} + (x-x^2+y^2)j + (x^2+y^2+z^2)k$ and S is the	6	Co	02	BL2	6	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION - JULY 2023

	T	surface of the hemispherical cap $x^2 + y^2 + z^2 = 4$, $z \ge 0$ above XY		·		T
1		plane. $x + y + z = 4$, $z \ge 0$ above XY				
	c	Two independent samples of sizes 8 and 7 contained the following values	8	CO1	BL3	4
		Sample I 19 17 15 21 16 18 16 14				
		Sample II 15 14 15 19 15 18 16				
		Is the difference between the sample means significant?				
3	a	Find real root of the equation $x^3 - 3x + 1 = 0$ lying between 1 and 2 correct to three decimal places using Newton-Raphson method.	6	CO3	BL4	7
	b	Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ where $\overline{F} = 2x\hat{i} + (xz - y)j + 2zk$ and C is the	6	CO2	BL5	6
		straight line joining the points $O(0,0,0)$ and $P(3,1,2)$				
	С	In the usual notation, prove the Spearman's formula for Rank correlation	8	COI	BL5	1
		$R = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} d_i^2$, where $d_i = x_i - y_i$				
4	a	From the following data, compute the rank correlation.	6	CO1	BL5	1
		X 82 68 75 61 68 73 85 68				
		Y 81 71 71 68 62 69 80 70				
	b	The marks obtained by students in a certain examination follow a normal distribution with mean 55 and standard deviation 10. If 500 students appeared at an examination, calculate the number of students scoring (i) less than 50 marks (ii) more than 65 marks.	6	COI	BL3	3
	С	Given $\frac{dy}{dx} = 1 + xy$; $y(0) = 2$. Find $y(0.1)$ and $y(0.2)$ using fourth	8	CO3	BL3	7
		order Runge-Kutta method.				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

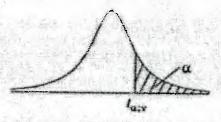
END SEMESTER EXAMINATION - JULY 2023

5	a	The state of the s	6	CO	BL4,	5
		$f(x) = \begin{cases} k(1-x^2), & \text{if } 0 \le x \le 1\\ 0 & \text{elsewhere} \end{cases}$				
1		0 elsewhere				
		is the probability density function. Also find $P(0.1 \le X \le 0.2)$ and $P(X \ge 0.5)$				
		and $I(X \ge 0.5)$				
	b	and the second second to the will 2.0 and	6	COI	BL4	
1		the S.D of another random sample of 500 is 2.7. Assuming the samples to be independent, find whether the two samples could				
-	С	have come from population with the same S.D?				
		Verify Gauss Divergence Theorem for $\overline{F} = (x^2 - yz)\hat{i} + (y^2 - xz)j + (z^2 - xy)k$ over the surface of the	8	CO2	BL2, BL4	
		cuboid $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$				
			1			+
	a	Certain pesticide is packed into bags by a machine. A random sample of 10 bags is drawn and their contents are found to weigh	6	COI	BL5	14
THE SCHOOL SALES OF SHEET SHEET SALES SALE		sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS.	6	COI	BL5	4
The state of the s		sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45	6	CO1	BL3	No.
THE SCHOOL SALES OF SHEET SHEET SALES SALE		sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS. The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8. If the sum of squares of the differences in ranks is 33. Find the number of students in the group. For normal distribution 30% items are below 45 and 8% items are	6		A manufacture of the state of t	6
t		sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS. The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8. If the sum of squares of the differences in ranks is 33. Find the number of students in the	The residence of the state of t	CO1	BL3	No.
C	1 2	sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS. The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8. If the sum of squares of the differences in ranks is 33. Find the number of students in the group. For normal distribution 30% items are below 45 and 8% items are above 64. Find the mean and variance of the normal distribution	8	COI	BL3, BL5	6
C C	1 2	sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS. The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8. If the sum of squares of the differences in ranks is 33. Find the number of students in the group. For normal distribution 30% items are below 45 and 8% items are	6	CO1	BL3	6
C	1 2	sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS. The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8. If the sum of squares of the differences in ranks is 33. Find the number of students in the group. For normal distribution 30% items are below 45 and 8% items are above 64. Find the mean and variance of the normal distribution Two random sample gave the following data	8	COI	BL3, BL5	6
b	1 2	sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS. The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8. If the sum of squares of the differences in ranks is 33. Find the number of students in the group. For normal distribution 30% items are below 45 and 8% items are above 64. Find the mean and variance of the normal distribution Two random sample gave the following data Sample No Size Mean Variance	8	COI	BL3, BL5	6

SARDAR PATEL COLLEGE OF ENGINEERING

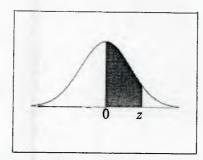
(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION - JULY 2023


	Use Euler's method to find approximate value of y at $x = 2$ (Correct to four decimal places).								6	CO3	BL5	7				
- 1	Given that $\frac{dy}{dx} = 2 + \sqrt{xy}$; $y(1) = 1$. Take $h = 0.2$															
С	300 digits v numbers. T	vere o	chose eque	en at i	rando f digi	m fr	om a	table follo	e of r	ando	om		8	COI	BL1, BL3	2
	Digit	0	1	2	3	4	5	6	7	8	9	Total				1
	Frequency	28	29	33	31	26	35	32	30	31	25	300				
	Using 2 distribut	² -tes ed in	st exa	amine al nur	the l	l hypo	thesi	s tha								

Chi-Square (32) Olstribution

Degrees of										
Freedom	0.995	0.99	0.975	0.95	0.90	Û.10	0.05	0.025	0.01	0.0
1 2 3 4 5	0.010 0.072 0.207 0.412	0.115 0.297	0.216 0.484	0.103 0.352	0.211	4.605 6.251	5.991 7.815 9.488	7.378	9.210	10 12 14
6 7 8 9	0.676 0.989 1.344 1.735 2.156	0.872 1.239 1.646 2.088 2.558	1.237 1.690 2.180 2.700 3.247	1.635 2.167 2.733 3.325 3.940	2.204 2.833 3.490 4.168 4.865	10.645 12.017 13.362 14.684 15.987	12.592 14.067 15.507 16.919 18.307	14.449 16.013 17.535 19.023 20.483	16.812 18.475 20.090 21.666 23.209	18. 20. 21.
11 12 13 14 15	2.603 3.074 3.565 4.075 4.601	3.053 3.571 4.107 4.660 5.229	3.816 4.404 5.009 5.629 6.262	4.575 5.226 5.892 6.571 7.261	5.578 6.304 7.042 7.790 8.547	17.275 18.549 19.812 21.064 22.307	19.675 21.026 22.362 23.685 24.996	21.920 23.337 24.736 26.119 27.488	24.725 26.217 27.688 29.141 30.578	26.1 28.2 29.8 31.3
16 17 18 19 20	5.142 5.697 6.265 6.844 7.434	5.812 6.408 7.015 7.633 8.260	6.908 7.564 8.231 8.907 9.591	7.962 8.672 9.390 10.117 10.851	9.312 10.085 10.865 11.651 12.443	23.542 24.769 25.989 27.204 28.412	26.296 27.587 28.869 30.144 31.410	28.845 30.191 31.526 32.852 34.170	32.000 33.409 34.805 36.191	32.8 34.2 35.7 37.1 38.5
Showing to the same	8.034 8.643 9.260 9.886 10.520	8.897 9.542 10.196 10.856 11.524	10.283 10.982 11.689 12.401 13.120	11.591 12.338 13.091 13.848 14.611	13.240 14.042 14.848 15.659 16.473	29.615 30.813 32.007 33.196 34.382	32.671 33.924 35.172 36.415 37.652	35.479 36.781 38.076 39.364 40.646	37.566 38.932 40.289 41.638 42.980 44.314	39.9 41.4 42.7 44.1 45.5 45.5
28 19 10	11.160 11.808 12.461 13.121 13.787	12.198 12.879 13.565 14.257 14.954	13.844 14.573 15.308 16.047 16.791	15.379 16.151 16.928 17.708 18 493	17.292 18.114 18.939 19.768 20.599	35.563 36.741 37.916 39.087 40.256	38.885 40.113 41.337 42.557 43.773	41.923 43.194 44.461 45.722 46.979	45.642 46.963 48.278 49.588 50.892	46.92 48.29 49.64 50.99 52.33 53.67
	20.707 27.991 35.534 43.275 51.172	22.164 29.707 37.485 45.442 53.540	24.433 32.357 40.482 48.758 57.153	26.509 34.764 43.188 51.739 60.391	29.051 37.689 46.459 55.329 64.278	51.805 63.167 74.397 85.527 96.578	55.758 67.505 79.082 90.531 101.879	59.342 71.420 83.298 95.023 106.629	63.691 76.154 88.370 100.425 112.329	55.07 66.76 79.49 91.95 104.11 116.32
A CONTRACTOR OF THE PARTY OF TH	59.196 57.328	61.754 70.065	65.647 74.222	69.126 77.929	73.291 82.358	107.565 118.498	113.145 124.342	118.136 129.561	124.116 135.807	128.299 140.169


Table of the Student's t-distribution

The table gives the values of $t_{\alpha,v}$ where $Pr(T_v > t_{\alpha,v}) = \alpha$, with v degrees of freedom

1	α 0.1	0.05	0.025	0.01	0.005	0.001	0.0005
1	3.078	6,314	12.076	31.821	63,657	318,310	636.620
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4,140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3,707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3,646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
*	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Standard Normal Distribution Table

	z	.00.	.01	.02	.03	.04	.05	.06	.07	.08	.09
	0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
1	0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
١	0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
1	0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
1	0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
L	0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
	0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
İ	0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
1	0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
	0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
	1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
	1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
	1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
	1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
	1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
_	1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
- 1	1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1	1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
	1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
- 1	1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
_	2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
	2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
	2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
	2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
	2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
	2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
	2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
1	2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
	2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
1	2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
	0.	.4987	.4987	_4987	.4988	.4988	_4989_	.4989	.4989	.4990	4990
	.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
1	3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
1	.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
ļ	.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3	.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998